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ABSTRACT

The EM
�� is an instrument used to measure conductivity in the soil�

and thus estimate soil salinity� An alternating current is sent through a trans


mitting coil� This creates an alternating magnetic �eld that induces current

ow in the underlying soil� These currents create secondary magnetic �elds�

The combination of �elds induces a secondary voltage in the receiving coil of

the EM
��� The instrument measures the relative strength of the secondary

magnetic �elds which is a function of the apparent electrical conductivity of

the underlying soil�

The response function of the instrument can be represented with a

linear or nonlinear model� both of which are presented� A forward comparison

of the two models is presented on the �� sites� The nonlinear model always

outperforms the linear model at predicting the EM
�� measurements frommea


sured electrical conductivity �ECa� pro�les� The di	erence is substantial when

ECa readings are high �over ��� mS

m
�� Next� the model�s ability to invert ECa

readings is investigated� With the linear model it is di�cult to predict conduc


tivities below ��� meters� The nonlinear model is much more computationally

expensive but is generally more sensitive to ECa trends and can yield a better

solution�
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Chapter �

Introduction to Ill�Posed Inverse Problems

��� Forward� Inverse� and Identi�cation Problems

The existence of forward and inverse problems follows from the cause

and e	ect relationships found in nature� A speci�c mathematical model rep


resenting some physical system could be represented by K� Then the current

state of the system could be represented by x� The present state x may cause

some natural unique e	ect via the system modeled by K� Consider this e	ect

or set of e	ects to be y� This cause and e	ect relationship can be generally

expressed as

Kx� y� �����

Three important problems are de�ned in terms of what is known and unknown

about this relationship �Groetsch� ������

A forward problem is the most natural of the three� In this case the

systemK is well understood and the cause x is well de�ned� It is left to predict

the e	ect y� Often a cause cannot be directly measured� It is left to reconstruct

the cause x� by de�ning K� and then measuring the e	ect� This is an inverse

problem� Both inverse and forward problems assume complete knowledge of

K� When K has not been de�ned� it is left to repeatedly observe cause and

e	ect combinations until K is completely known and all feasible e	ects can be

predicted� This is a model identi�cation problem�

�



�

Note the above assumption that predicted e	ects in the forward prob


lem are unique� This does not imply a unique cause for each e	ect� This

interesting observation leads to the discussion of ill�posed inverse problems�

��� A Prelude to Ill�Posed Problems

A problem is well�posed if and only if the following are true �Zauderer� ������

i� the solution exists�

ii� the solution is uniquely determined�

iii� the solution depends continuously on the initial and�or boundary

data�

A problem is well�conditioned if points �i� and �ii� from above hold as

well as a modi�cation of point �iii�� a small deviation in problem parameters

results in a small deviation in the solution�

The negation of any point implies that the problem is ill�posed �or

ill�conditioned�� Of course we desire that any problem have a solution as in

point �i�� In the practical solution of inverse problems this is not a major

issue� An e	ect is always preceded by a cause� The inverse problem not having

a solution would indicate a problem with the model� Consider again that a

forward problem is assumed to produce a unique e	ect� Of course there could

be multiple causes inducing the same e	ect� In this case the corresponding

inverse problem of reconstructing the cause is ill
posed by condition �ii��

This thesis will be primarily concerned with point �iii�� Any problem

is ill
posed if small deviations in the problem induce discontinuous deviations

in the solution� This feature is largely prevalent in inverse and identi�cation



�

problems� In fact� ill
posedness in this sense is extremely problematic� any

measurement error is essentially a small parameter deviation� The implications

will be discussed at the end of chapter �� We proceed by examining three

problems that are either ill
posed or ill
conditioned�

��� Ill�Posed Inverse Problems

These examples are closely related to the inversion problem stated

in chapter � and solved in the remainder of the thesis� The �rst has simple

intuitive appeal� The last two demonstrate ill
conditioning and ill
posedness

in linear algebra and calculus�

����� A Graphical Example

Consider two lines in a plane� Assume at �rst� that they are nearly

perpendicular and not vertical� Also note that four numbers de�ne the system�

two slopes and two y
intercepts� For this system the solution is the point �x� y�

satisfying the equations of both lines� Finally we consider a tiny alteration in

the system� Allow a small deviation in either of the y
intercepts� This small

change results in a correspondingly small change in the solution as shown in

�gure ����

Now again consider two lines in a plane but assume they are nearly

parallel� The solution of this system of equations is still the intersection� But

a small deviation in either y
intercept results in a remarkably large change in

the solution� This is demonstrated in �gure ����

In the �rst case the solution was insensitive to small system devia
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Conditioned System of Equations�
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tions� In the second case the solution to the system of equations is very sensitive

to changes in the intercept� This system is ill�conditioned�

����� A Linear Algebra Example

We will look now at an adaptation of an example by Hansen �Hansen� ������

Consider the system of equations Ax � b�� where

A �

�
B� ���� ����

���� ����
���� ����

�
CA � and b� �

�
B� ����

����
����

�
CA �����

There exists an exact solution x� �

�
�
�

�
� As in ����� we consider

the e	ect of a small perturbation of b��

Let b� �

�
B�

���� ����
���� ����
���� ����

�
CA
�

�
�

�
�

�
B�

����
�����
����

�
CA �

�
B�

����
����
����

�
CA �����

This results in the over determined system of equations Ax� � b��

Though there is no exact solution� it is natural to seek a least squares solution�

that is� to �nd

minxkAx� b�k�
where k � k� is the Euclidean �
norm� This solution is xLSQ �

�
����
�����

�
� A

relatively small change in a system parameter� b�� induced a huge change in

the solution x�

Recall that if we take A to be acting on x to yield a measurable result

b� then �nding x for a given b is an ill�conditioned inverse problem� Section

��� demonstrates how an ill
posed inverse problem can be discretized into an

ill
conditioned inverse problem�



�

����� Systems of Linear Equations and Condition Numbers

As shown by Forsythe �Forsythe et al�� ������ one can conveniently

de�ne the condition number of a matrix so as to develop a relationship be


tween the relative change in b and the relative error in the solution for x� The

de�nition can be based on the �� �� or � norms� denoted k � k�� k � k�� or k � k�
respectively�

Given a square matrix A and a non
zero vector x� let bx � Ax� The

condition number of A is de�ned as

cond�A� �
M

m
� where �����

M � maxx
kAxk
kxk � maxx

kbxk
kxk �����

and m � minx
kAxk
kxk � minx

kbxk
kxk �����

By de�nition� M is equivalent to the conditional matrix norm of A with respect

to the given vector norm and is denoted by� M � kAk� This can be used to

�nd an alternate de�nition of cond�A� for nonsingular square matrices� Starting

with the de�nition of m� we have

m � minx
kAxk
kxk �����

� minx
kAA��xk
kA��xk �����

� minx
kxk

kA��xk �����



�

�
�

maxx
kA��xk
kxk

������

�
�

kA��k ������

Taking cond�A� to be the ratio of M to m� we are left with

cond�A� �
M

m
� kAk �

�
kA��k

� kAkkA��k ������

This approach only works if A is both nonsingular and square�

Now if b is perturbed by an amount �b� then the inverse solution

of Ax � b is perturbed by an amount �x� Then we have the new system of

equations

A�x��x� � b��b� ������

It follows that A��x� � �b� By the de�nitions of m and M we have both

mk�xk � k�bk ������

and Mkxk � kbk ������

Assuming m �� � these results may be combined to form the relation


ship
k�xk
kxk � cond�A�

k�bk
kbk ������

On the right we see that cond�A� is multiplied by k�bk
kbk � This fraction is

essentially the relative change in the right hand side of Ax � b� This product

bounds k�xk
kxk which is the relative error caused by this change� With this

relationship it quickly becomes apparent that a small condition number of A

implies that resulting inverse solutions of a perturbed problem would contain
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little error� A large condition number provides a large upper bound on the

relative error� Such a system is said to be an ill�conditioned system of equations�

����
 A Fredholm Integral Equation of the First Kind

A Fredholm Integral Equation of the First Kind is an equation of the

following form �Wing� �����

Z �

�
k�s� t�x�t� dt � y�s�� � � s � �� ������

Of course if the functions y and k are known� then the determination of x is

an inverse problem� Assume that k is known and that x� is a unique inverse

solution for a given y�� Whereas in section ����� we began with a small per


turbation on the vector b�� we now consider a large perturbation of x� of the

form

m�t� � M sin�n�t� ������

Then if follows that

Z �

�
k�s� t��x��t� �m�t�� dt �

Z �

�
k�s� t��x��t� �M sin�n�t�� dt

�
Z �

�
k�s� t�x��t� dt�

Z �

�
Mk�s� t� sin�n�t� dt

By the Riemann
Lebesgue Lemma� if k��� t� is square integrable� then

Z �

�
k��� t� sin�n�t� dt� � as n�� ������

Note that this result is independent ofM �s magnitude� Then in a forward sense�

as n increases� large deviations in x cause small deviations in the projected y� In

the context of inverse problems� small alterations in y can cause discontinuous

deviations in the inverse solutions of x �Groetsch� ����� Hansen� ������
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Many problems in the physical sciences� from tomography to geo


magnetic prospecting� can be expressed as Fredholm integral equations of the

�rst kind �Parker� ����� Twomey� ����� Wing� ������ The ill
posedness of these

equations is particularly problematic to those interested in solving problems in

these �elds�

��
 Why Solving These Problems is Important

An understanding of ill
posed problems is of practical importance to

all those doing mathematical work in the physical sciences� Recall from the

opening discussion that a problem has three parts� a system model� K� a cause

or system state� x� and an e	ect� y� Most scienti�c problems are either inverse

problems or model identi�cation problems� In the inverse problem the e	ect

is somehow measured and the cause� of actual interest� is induced� There is

always some sort of error involved in the measurement of y� We would like

the corresponding error involved in determining x to be small as well� The

same sorts of things can be said of the model identi�cation problem� Methods

for dealing with this ill
conditioned behavior� producing a physically realistic

inverse solution for x� are the topic of chapter two�



Chapter �

Discretization and Regularization� Solving the Ill�Posed

Inverse Problem

Section ����� introduced the Fredholm Integral Equation of the First

Kind� Z �

�
k�s� t�x�t� dt � y�s�� �����

Section ����� introduced over determined systems of equations� In these cases

ill
posed and ill
conditioned behavior was demonstrated� This chapter will

focus on three general methods for solving ill
conditioned systems of equations�

First� however� we will recall the continuous Fredholm integral equation and

demonstrate its relationship to linear systems of equations�

��� Discretizing the Fredholm Integral Equation of the First Kind

In many physical applications x�t� and y�t� are continuous univariate

functions� To solve the inverse problem� one observes y and deduces x� It is

usually impractical to observe y in a continuous sense� For example t may

represent time and y may represent some time dependent quantity such as

position that is measured at certain points in time� Because y is not completely

known� at best we can only discretely approximate x�

Consider the discretization of the linear Fredholm integral equation

�Groetsch� ����� Wing� ������ We measure y at points s�� s�� ���� sM� This yields

��



��

a set of measurements y�� y�� ���� yM� Now ����� becomes a set ofM�� equations

predicting yi�

Z �

�
k�s�� t�x�t� dt � y� �����

Z �

�
k�s�� t�x�t� dt � y� �����

and so on up to Z �

�
k�sM � t�x�t� dt � yM �����

Consider the ith equation� It may be broken up as follows�

Z �

�
k�si� t�x�t�dt �

Z P�

�
k�si� t�x�t�dt�

Z P�

P�

k�si� t�x�t�dt�����
Z �

PN��

k�si� t�x�t�dt

Now let xj be a constant function approximating x�t� on the interval �Pj��� Pj��

The above equation becomes

Z �

�
k�si� t�x�t�dt � x�

Z P�

�
k�si� t�dt� x�

Z P�

P�

k�si� t�dt� � � �� xN

Z �

pN��

k�si� t�dt

Note that
R Pj
Pj��

k�si� t�dt may be calculated using a simple integration routine�

It functions� then� as a scalar multiple of xj�

Performing these operations on each equation� the set of equations be


comes a linear system in the piecewise constant approximations xj of x� Finally

we have Kx � y� where y is a column M
vector containing discrete approxima


tions to y�t�� x is a column N
vector containing discrete approximations to x�

and K is an N 	M matrix de�ned as

kij �
Z Pj

Pj��

k�si� t�dt �����



��

�

Discretizing the integral equation cures the practical problem of con


tinuity� Ill
conditioned behavior� however� is inherited by the system of linear

equations �Groetsch� ������ In fact Groetsch shows that decreasing the dis


cretization parameter or increasing the size of the partition of ��� �� previously

described� creates a less conditioned system�

Consider Fox and Goodwins� example as cited by Groetsch�������

The integral equation

Z �

�
�s� � t��

�

�f�t�dt �
�

�
��� � s��

�

� � s��� � � s � � �����

is discretized into a discrete system of linear equations� Kf � g where K is an

n	n matrix� MATLAB is used to �nd the condition number of K for di	erent

discretization parameters�
n cond�n�
� ���

�� ���	 ����

�� ���	 ����

�� ���	 ����

Recall from equation ������ that cond�A� is a general measure of ill
posedness�

As the discretization parameter increases� the upper bound on the relative

solution error increases dramatically� We must therefore turn to the techniques

of regularization to temper this problem�

��� Regularization

A direct solution of an ill
conditioned inverse problem is poor because

it fails to approximate the true solution in the presence of uncertainty� Perhaps
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where the true solution x is almost at� the inverse solution has a large slope�

Or maybe the true solution has little curvature but the inverse solution has a

sharp curvature�

To handle these types of problems we must have some method of

measuring their extremeness� Consider the unscaled �th� �st� and �nd discrete

unscaled derivative operators�

L� �

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA � �����

L� �

�
B� � �� � �

� � �� �
� � � ��

�
CA � �����

L� �

�
� �� � �
� � �� �

�
� �����

Measures of size� slope� and curvature for some inverse solution x �

�x�� x�� x�� x	�T are� respectively�

kL�xk� � k

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA
�
BBB�

x�
x�
x�
x	

�
CCCA k ������

� k�x�� x�� x�� x	�Tk� ������

kL�xk� � k
�
B�

� �� � �
� � �� �
� � � ��

�
CA
�
BBB�

x�
x�
x�
x	

�
CCCA k ������

� k�x� � x�� x� � x�� x� � x	�
Tk� ������
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Figure ���� Step Function Representation of x�t��

kL�xk� � k
�
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Consider the following example� Some quantity� x� depends on t as

x�t� � t���� Letting t range from ��� to � in steps of ��� we generate the set of

�� x values�

������� ������� ������� ������� ���� ������� �������

The step function in �gure ��� displays this vector of x values against
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the corresponding vector of t values� This parabola has a small amount of

curvature on ����� whereas the relative slope is quite large� These qualities can

be demonstrated with the previously described discrete derivative operators�

The norm of the zeroth discrete derivative of x� or more plainly

the norm of x� is de�ned by �kL�xk��� � �kIxk��� � �kxk�� � ��������� �

��������� � ��������� � ��������� � � � ���������� � ��������� so that kL�xk �

�������

The norm of the �rst discrete derivative of x is de�ned by �kL�xk��� �
���������������������������������������������������������������������

������� � �������� so that kL�xk � �������

The norm of the second discrete derivative of x is de�ned by �kL�xk��� �
������� � ��������� � �������� � ������� � ��������� � �������� � � � � � �����
��������� � �������� so that kL�xk� � �������

The �rst discrete unscaled derivative is much larger than the second

discrete unscaled derivative� Also� the norm of x is larger than either unscaled

derivative� When it is known that any one of these norms should be small

for a good inverse solution� one can impose constraints on these norms to

ensure that quality� The methods of regularization seek to accomplish two

goals �Hansen� ����� Hanke and Hansen� ����� Engl� ������


 To implement side constraints so as to ensure stable solutions�


 To determine proper weights to place on these side constraints�

The L
curve Criterion� Cross Validation� and the Discrepancy Prin


ciple� are all methods that accomplish these goals �Hansen� ������
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����� L�curve Principle

Because a linear Fredholm integral equation may be discretized� we

have at present the general problem

minxkAx� bk�� ������

where x and b are column vectors and A is a matrix�

To smooth out the ill
conditioned tendencies we append a penalty

function� referred to as the regularization term� involving a discrete derivative

operator �Hansen� ������

minxf kAx� bk�� � ��kLixk�� g� ������

The choice of derivative operator is important� Solutions could be

sensitive to this choice� Of course this requires some assumption on the solution

shape� In the presence of no information one might try several derivative

operators and compare resulting solutions�

A more di�cult subproblem is choosing ��� the weight placed on the

regularization term� Note that any good inverse solution� x�� will impose a

small residual error kAx� � bk�� and a small regularization term kLix
�k���

The L
curve principle is as follows �Hansen� ������ Repeatedly solve

the modi�ed minimization problem with several values of ��� Then for each

value of ��� plot the regularization term against the residual term for the cor


responding inverse solution� x��� In other words plot the set of points

�kAx� � bk� kLix�k�� ������
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This process will trace out an �L
curve� as in �gure ����

In practice this curve tends to be an �L� with a de�nite corner� As

�� increases� ow moves down the curve� This is because a large value of ��

is associated with a large weight on the regularization term kLixk��� Then to

properly minimize kAx� bk�� � ��kLixk��� x must be such that kLixk�� is very

small� The residual term kAx� bk�� is allowed to grow� Such a point tends to

be far from the y
axis and close to the x
axis�

The best choice of �� will produce a solution corresponding to the

L
curve corner� To see why it is best� one can view the corner of �gure�����

and imagine a small improvement being made on either term� If one wants

a solution that is slightly more smooth than the corner solution� then a large

sacri�ce in sum squared error must be made� If one wants a slightly smaller

sum squared error� then a large sacri�ce must be made in smoothness�

The L
curve criterion can� however� fail to produce a distinct corner�

In this case one may turn to cross validation or the discrepancy principle�

����� Cross�Validation

As with the L
curve criterion� ordinary cross validation �OCV� is a

method of choosing a good value of �� with respect to ������

minxkAx� bk�� � ��kLixk���

But for notational convenience this section will discuss the identical problem�

minx
MX
i
�

�aix� bi�
� � ��

MX
i
�

�li�p�x�
�� ������
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Here ai is the ith row of A and li�p� is the i
th row of the pth discrete derivative

operator Lp� In other words� li�p�x is the ith element of Lpx� Again kAx� bk��
measures the amount of solution error and Lix is a quality desired to be small�

OCV uses the idea that if some element of b� say bi� is eliminated

from b then a good value of �� will still yield a good solution �Hansen� �����

Wahba� ������ It will be good in that the resulting solution x�� will predict a

vector b� that can be used to interpolate the missing element� bi� Of course the

mis�t of this prediction is jbi � b�ij�

Given a �xed ��� one could perform this prediction process M times

and sum the squares of the mis�ts� Then we have

MX
i
�

�a�x
�
��i � bi�

� ������

where x���i minimizes

MX
j
��j �
i

�aj � bj�
� � ��

MX
j
��j �
i

�lj�p�x�
� ������

Letting �� vary we have the function

V ��� �
MX
I
�

�aix
�
��i � bi�

� ������

Finally we pose an �external� minimization problem�

min�V ���� ������

OCV provides an alternative method of �nding a good regularization

weight� It can be� however� computationally expensive� Each instance requires

that ������ be solved M times�
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����� Discrepancy Principle

The discrepancy principle is of particular interest when there is no L


curve corner and when OCV is computationally di�cult to implement� Here we

still assume that a good solution x� produces a small kAx�bk� and kLixk�� We

go further to assume an explicit bound on the size of kAx�bk�� say �� We are left

with a second rendition of the original minimization problem �Hansen� ������

minxkLixk�

s�t� kAx� bk� � �� ������

This method has intuitive appeal over the L
curve criterion and OCV�

The column vector b usually consists of measured values� An experimenter often

has some knowledge of total error involved in the measurements� The norm

kAx � bk� is a measure of �tted error so we take � to be the estimated total

error in measuring b� Solutions tend to be� however� very sensitive to the choice

of �� Furthermore� the measurement error is itself a random variable� If the

actual measurement error is less than the expected measurement error� then

the solution will be overregularized� If the actual measurement error is too

large� then the solution will be underregularized resulting in a noisy solution�

��� Non�Linear Problems

Chapter � has� so far� outlined the process of discretizing linear Fred


holm integral equations and solving the resulting ill
conditioned linear least

squares problems� The second half of this thesis will compare a linear and non


linear inverse problem� A word should be said of non
linear inverse problems�
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As long as a non
linear forward problem maps vectors x onto vectors

y� a minimization problem such as ������ may be set up� Any of the methods

described in this chapter may be used to pick a regularization parameter�

For example� let F � x �Rn � y �Rm� Then we have the nonlinear

L
curve problem

minxf kF �x�� bk� � ��kLixk� g ������

and the nonlinear discrepancy problem

minxkLixk�

s�t� kF �x�� bk� � �� ������

In the nonlinear case there can be an added di�culty of multiple local

minima causing optimization routines to stall before �nding global minima�



Chapter �

The Geonics EM��� Problem

��� The Inversion Problem De�ned

Having examined the techniques of regularization and the need for

them� chapter � provides the physical background for a soil hydrology problem�

Chapter � concludes with a discussion of two di	erent predictive models� In

the remaining chapters we apply the introductory material to this problem and

discuss the results�

A soil�s salinity is� by de�nition� the level of dissolved inorganic so


lutes in the soil� There are many instances in which knowing soil salinity is

important� For example� if irrigated agriculture is to remain sustainable� the

salinity within these soils must remain at a tolerable level �Rhoades� ������

These solutes tend to be conductive� When the electrical conductivity

of soil� referred to as ECa� can be directly measured� salinity can be immedi


ately determined� Invasive measurements are� however� both costly and time

consuming� This brings us to the focus of the second half of the thesis� the

non�invasive inversion of soil conductivity from above ground measurements�

Consider an instrument containing two coils of wire� An alternat


ing current is sent through the transmitting coil� This creates an alternating

magnetic �eld that induces current ow in the underlying soil� These currents

create secondary magnetic �elds� Finally the combination of �elds induces a

��



��

secondary voltage in the receiving coil of the EM
��� The instrument would

measure the relative strength of these secondary �elds� �Borchers et al�� �����

Wait� ����� McNeill� ����� McNeill� ������

Geonics Limited markets a device called the EM��� Soil Electrical

Conductivity Meter� This machine will be referred to as the EM
��� It is

essentially a hand held bar separating two coils of wire� The coils are �xed

with respect to each other and are exactly � meter apart� The coils can be

positioned either vertically or horizontally� It should be noted that the coil

orientation drastically a	ects the measurements taken� This study uses both

vertical and horizontal measurements at any given height �Borchers et al�� �����

Rhoades� ������

For future reference� the problem of predicting EM
�� measurements

from a vertical electrical conductivity pro�le will be referred to as the forward

EM��� problem� Inverting the pro�le from the EM
�� measurements is then

the inverse EM��� problem� The remainder of this chapter will discuss a linear

and nonlinear model for the forward and inverse problems�
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��� The Linear Model

The linear model can be stated as follows �Borchers et al�� ����� McNeill� �����

mV �h� �
Z �

�
�V �z � h�	�z� dz� �����

mH�h� �
Z �

�
�H�z � h�	�z� dz� �����

where

mH�h� � predicted horizontal measurement at height h�

mV �h� � predicted vertical measurement at height h�

	�z� � soil conductivity z units below the surface�

�H���� �V ��� � sensitivity functions�

The sensitivity functions are de�ned as

�V �z� �
�z

��z� � ��
�

�

� �����

and �H�z� � � � �z

��z� � ��
�

�

� �����

and represent the relative weight placed on the conductivity at depth z� They

are� in fact� linear approximations derived from the nonlinear model discussed

in the next section� Figure ��� displays these functions� While the coils are in a

horizontal position� the instrument is highly sensitive to conductivities near the

surface� Measurements taken in a vertical position are� however� more sensitive

to conductivities slightly beyond the surface� In either case limz�� ���z� � ��
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When the EM
�� device is held at height h� the additional displace


ment must be taken into account� The kernels become �H�z�h� and �V �z�h��

Finally� the equations are similar in form to the Fredholm integral equation of

the �rst kind ������

In fact they are discretized in the same fashion yielding the discrete

forward and inverse problem K	 � b and min�kK	 � bk� 	 � � respectively�

Since conductivities are non
negative� we constrain 	 to be greater than or

equal to �� Appending the weighted penalty term from chapter �� we are left

with the problem�

min� fkK	 � dk� ��kLi	kg
s�t� 	 � ��

In this thesis we attempt to solve �� di	erent instances of this problem� Each in


stance is based on a data set taken by Rhoades� Corwin� and Lesch �Rhoades et al�� ������

These data sets will be introduced in chapter �� In each case� the L
curve cri


terion was used to �nd a �good� value of ��� All minimization is performed in

MATLAB using the nnls command� This command implements the non
linear

least squares algorithm� NNLS �Lawson and Hanson� ������

It is widely known �and will be shown in subsequent chapters� that

this model breaks down in the presence of high conductivities� This aw induces

the need for the following nonlinear model�

��� The Non�Linear Model

The linear model maps continuous pro�le functions 	�z� into contin


uous measurement functions� mV �h� and mH�h�� Due to its form it is easily



��

discretized using chapter � techniques� On the other hand� the nonlinear model

must initially assume a discretized soil pro�le� It then maps these conductivity

vectors into a discrete function describing EM
�� measurements at di	erent

heights� Assume then� that the soil is discretized into M layers where the M th

layer is semi
in�nite� Let di represent the thickness of the ith layer and let 	i

be the conductivity of this layer� This discretization is seen is �gure ������

The measurement at height h� is described by the following equations

�Wait� ������

mV �h� � Im�� �B�T�� and mH�h� � Im�� �B�T�� �����

T� �
Z �

�
�R��

gB

r
� g� e

��gh

� J��gB� dg� �����

T� �
Z �

�
�R��

gB

r
� g e

��gh
� J��gB� dg� and �����

mV �h�� height h measurement with EM
�� in vertical orientation�

mH�h� � height h measurement with EM
�� in horizontal orienta


tion�

Im�z�� imaginary part of a complex number� z�

f � EM
�� frequency����� khz��


 � ��f �

r�intercoil spacing� � meter for the EM
���

�� �magnetic permeability of air� ������henry�m�

�i � magnetic permeability of the ith layer�
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Figure ���� Soil Discretization for Nonlinear Model�



��

��
q

�
�����

�

B � r

�
�

J�� J� �Bessel functions of orders � and ��

Finally we de�ne R� as follows

R���� �
N� � Y�
N� � Y�

�����

where

Y� � N�

�
Y� �N� tanh u�d�
N� � Y� tanh u�d�

�
� �����

Y� � N�

�
Y� �N� tanh u�d�
N� � Y� tanh u�d�

�
� ������

and so on to

YM�� � NM��

�
YM�� �NM�� tanh uM��dM��

NM�� � YM�� tanh uM��dM��

�
� ������

YM�� � NM��

�
NM �NM�� tanhuM��dM��

NM�� �NM tanhuM��dM��

�
� ������

and where Nk and uk are given by

Nk �

p
�� � i	k�k


i�k

� i �

p�� ������

uk �
q
�� � i	k�k
� ������

Here Yk is the surface admittance at the top of the ith layer and Nk is the char�

acteristic admittance of the ith layer �Nabighian� ����� Wait� ������ It should

be noted that the magnetic permeability of soil at the speci�c sites in question�

and in most soils� is essentially equal to the magnetic permeability of air� Thus

we make the simplifying assumption �i � ���



��

The nonlinear model is much more computationally intensive than

the preceding linear model� Assuming that a discrete conductivity pro�le is

known� each integral must be numerically computed N times to calculate N

forward predictions� This was not true for the linear model which could be

integrated by hand� To make practical use of this model� an e�cient method

of calculating the integrals must be used�

When B is taken to be a variable� equations ����� and ������ become

Hankel transforms with kernels�

�R��
gB

r
� g e

��gh
� and �R��

gB

r
� g� e

��gh
� � ������

Although B depends only on 	�� the kernels of the Hankel transforms depend

upon h� the height at which the EM
�� is displaced above the ground� For

each value of h� we calculate the Hankel transform at the designated value of

B� A FORTRAN code was published in ���� by Walter L� Anderson that does

this �Anderson� ������ Finally� it should be noted that the vast majority of

computational time in solving the nonlinear inverse problem is spent in this

integration routine� It is no trivial task�

The techniques of regularization that we have previously discussed�

may be used to condition this problem� Let vectors d and 	 represent the

thicknesses and conductivities of some proposed pro�le� Then let F �d� 	� be

the set of M predicted measurements given this pro�le� We are �nally left with

the discrete inverse problem�

min� kF �d� 	��mek� ��kLi	k
s�t� 	 � �
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where me is an actual set of EM
�� measurements�

Whereas MATLAB was a suitable environment to run the linear for


ward and inverse problems� a FORTRAN code had to be constructed to solve

the related nonlinear problems� The nonlinear least squares portion was solved

with a double precision IMSL subroutine called DBCLSF� To guard against the

possibility of �nding a local minimum point a multistart approach was used�

First a set of logarithmically spaced ��s was chosen� For each value

of ��� three initial guesses were chosen� After the three runs were completed

the �best� solution was taken to be the solution with the lowest function value�

Finally an L
curve was constructed� This study constructed L
curves by �tting

cubic splines around the points �kK	�� datak� kL	�k�� Then a new plot was

made for each site of the calculated curvature vs� the value of ��� The highest

point on this curve is the point of greatest curvature or the �L
curve corner��

ECa readings are known to rarely fall at or above ���� mS�m and

never below � mS�m within the �rst few meters of earth� Occasionally this �L


curve corner� yields a solution that is underregularized in that the maximum

and minimum conductivities are either zero or too large� With this in mind

an additional rule was adopted� if a solution reaches either � or ���� mS�m

before � meters� then �� is increased until a solution within these constraints

is found�

The only detail left to de�ne is the choice of initial guesses for the

multistart method� For the sites discussed in chapter �� the largest ECa reading

is about twice the largest EM
�� reading� Thus one initial guess is taken to be

a constant vector of the largest reading and another initial guess is taken to



��

be the twice the largest guess� The third initial guess is taken to be the best

solution from the last set of three runs�



Chapter 	

Forward Results

Chapters � and � compare the performance of the two preceding mod


els using data sets from �� di	erent sites� This data is supplied to us through

a technical report by Rhoades� Corwin� and Lesch �Rhoades et al�� ������ We

will begin chapter � with a discussion of this data� Then this data will be used

to compare forward predictions� In chapter � we will compare inverse solutions�


�� The Rhoades� Corwin� and Lesch Data Sets

A total of �� sites throughout California were chosen� At each site

detailed soil electrical conductivity� ECa� and Geonics EM
�� measurements

were taken�

Before actually taking ECa readings� the top soil was leveled o	 and

dry mulch was removed� Readings were taken at depths of �� ��� ��� ��� ���

��� ���� ���� ���� �������� ���� and ��� cm� At each depth� � readings were

taken� These � readings were spaced on a ��cm	��cm grid� Measurements

down to �� cm were taken by vertically inserting a �Martek bedding probe�� A

Martek �Rhoades
probe� was inserted horizontally for depths ��
��� cm� To

make this possible a trench was excavated in the E
W direction� To sample

the �nal meter� the top � meters were stripped o	 and a �Rhoades
probe� was

inserted vertically�

��



��

At each site� EM
�� measurements were taken at heights �� ��� ���

��� ��� ��� ��� ���� and ��� cm� At each height� � measurements were taken�

For both horizontal and vertical orientations of the EM
��� a measurement was

taken with the instrument facing directions �N� NE� E� SE��


�� Discussion of Forward Plots

The forward plots in appendix A were created in the following manner�

At each depth� the measured soil conductivities were averaged� This pro�le was

then used to interpolate the conductivities of �� cm layers down to � meters

with a semi
in�nite layer beginning at the � meter mark� It was assumed that

the conductivity of the semi
in�nite layer is the conductivity of the last thin

layer� It was found that the forward predictions are sensitive to this assumption�

More will be said of this later� Finally� using the linear MATLAB code and the

nonlinear FORTRAN code of the previous chapter� forward EM
�� predictions

were made at heights �� ��� ��� ��� ��� ��� ��� ���� and ��� cm�

Then for each site� two plots were made� One assuming a vertical

orientation of the instrument and one assuming a horizontal orientation� Each

contains two dotted lines representing predictions of the linear and nonlinear

models� as well as a solid line representing the average EM
�� measurement at

each height� There are a total of �� forward plots�

The following observations are a visual interpretation of the �� plots�

Observation 	
 Without exception� the nonlinear model outperforms

the linear model� In every plot the nonlinear predictions lie closer to the EM
��

measurements than the linear predictions�
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Observation �
 The linear model always over predicts the EM��� mea�

surements� In fact they are usually over predicted by a substantial amount�

It is not unusual for the linear predictions to be ��� � ���� larger than the

actual measurement�

Observation �
 The nonlinear model almost always over predicts EM�

�� measurements� But it usually over predicts by less than ��� of the actual

measurements� In some cases the nonlinear model�s predictions are impressively

close to the actual measurements� Examples include sites �� �� �� and ���

Observation �
 At sites with high soil conductivities� the nonlinear

model tends to make large improvements on the forward predictions� At sites

with low conductivities� the nonlinear model usually makes only subtle improve�

ments�

To demonstrate observation �� we will partition the �� sites into those

with �high� conductivities and those with �low� conductivities� The partition

will be based on the largest conductivity measurement� Comparing the set of

�� maximum conductivities� it is natural to de�ne a high conductivity site to

be a site with a maximum reading of at least ���mS
m � A low conductivity site

will be any site with a maximum reading of under ���mS
m � Refer to table ������

Finally consider an alternative partitioning of the �� sites� This will

be based on the extent to which the nonlinear model outperforms the linear

model� On site �� �� ��� ��� and ��� the nonlinear model makes modest improve


ments� This is generally consistent with observation � because � of the � sites

have low conductivities� An exception is site � which has been categorized as a

high conductivity site� In examining the measured conductivity pro�le ��gure



��

Site Max Conductivity Site Type

� ���� mS�m High
� ���� mS�m High
� ��� mS�m Low
� ��� mS�m Low
� ���� mS�m High
� ���� mS�m High
� ���� mS�m High
� ���� mS�m High
� ��� mS�m Low

�� ��� mS�m High
�� ���� mS�m High
�� ��� mS�m Low
�� ��� mS�m Low
�� ��� mS�m Low

Table ���� Site Type Based on Max Soil Conductivity

����� we see that the conductivity drops from ���� mS
m to ��� mS

m in the �rst

�� centimeters and continues to decrease� Site � might be better categorized as

a low conductivity site� The nonlinear model only makes a small improvement

on the linear model�s predictions for site � and thus this site is still consistent

with observation ��

The nonlinear model makes a large improvement on sites �� �� �� �� ��

�� �� ��� and ��� This is also generally consistent with observation � because �

of the � sites have high conductivities�

Also the computational di�culties of the nonlinear model were touched

upon in chapter �� Given these di�culties and observation �� the nonlinear

model is best �t for sites with high conductivities�
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Chapter 


Inverse Results

��� Discussion of Inverse Plots

The inverse problem has been solved for each of the �� Rhoades�

Corwin� and Lesch sites using each of the two models� Appendix B contains

one plot for each site� Each plot contains a solution for each model and the

average measured conductivity at each depth with one standard deviation bars�

The technical details of these runs were outlined in the previous chap


ter� It should be noted that the L
curve criterion was used to pick the regu


larization parameter ��� Attempts to use cross
validation on the linear model

were made� The resulting solutions were by no means better than the L
curve

solutions� Given the computationally expensive nature of cross
validation� ap


plication to the nonlinear model is currently infeasible� Also� an attempt to

use the discrepancy principle on the linear model was made� This attempt was

also not successful� The solution is far too sensitive to changes in the upper

bound of kK	 � dk��� The L
curve method is inexpensive to implement and

relatively stable�

Chapter � partitioned the �� sites into high and low conductivity

pro�les� It was concluded that the nonlinear model was more appropriate

than the linear model for high conductivity sites� We will continue this line of

reasoning here�

��
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Again take sites �� �� ��� ��� and �� to be low conductivity sites� For

sites �� ��� and �� the linear and nonlinear solutions are nearly identical� The

nonlinear solution for site �� is less regularized than the linear solution� It is

more regularized for site �� But for both sites the solution quality is similar�

Now consider the remaining sites� The quality of the solutions for

sites �� �� �� ��� and �� are nearly identical� The nonlinear solution for sites ��

�� and � are excellent whereas the linear solutions fails after ��� meters� Here

the nonlinear model is more sensitive than the linear model to lower depths�

This also will be discussed in the next section� These sites are interesting as

the measurements all increase with depth� Nonlinear success for site � is also

due in part to the second order regularization� This regularization is most

advantageous when a pro�le has little curvature�

Figure �B��� of the site � inverse solutions demonstrates an impor


tant point about the solution process� the choice of �� is critical� The linear

solution is able to pick up trends in the �rst ��� meters because it is somewhat

�underregularized� and allowed to bend� Perhaps with a good value of ���

the nonlinear models could yield an better result� For this site the nonlinear

L
curve resulted in large �� resulting in a solution with no curvature�



Chapter �

Possible Explanations of Unexplained Behaviors

This discussion of inuences not included in these models has been

reserved for a separate chapter� Note that every inuence listed below could

potentially e	ect both forward and inverse calculations�

��� Semi�in�nite Layer

Both models assume a semi
in�nite layer beginning at the � meter

mark� By semi
in�nite we mean that the conductivity is uniform from � me


ters down toward the center of the earth� Some assumption on this conductivity

must be made for the forward predictions� The plots included in this paper

assume that the conductivity of the bottom layer is the �nal interpolated con


ductivity� A set of similar plots was created assuming this conductivity to be

zero� This had a large e	ect on the linear model�s predictions and a small

e	ect on the nonlinear model�s predictions� We conclude that the linear model

is sensitive to conductivities below � meters�

��� Magnetic Permeability

In the chapter � description of the nonlinear model� �i represented

the magnetic permeability of the ith layer of soil� Also �� was taken to be the

magnetic permeability of air� This study has consistently assumed that �i � ��

��



��

for all i� But for soils containing magnetic material such as magnetite this is

not the case� It is known� however� that very little of these materials existed

at the Rhoades� Corwin� and Lesch sites�

��� Discretization

Both models assume a vertical discretization of the soil pro�le� Though

this cannot be avoided in practice� it always induces some level of error�

��
 Instrument Calibration

Calibration problems with the instruments used to collect the data

could a	ect the results� This could be the case with either the EM
�� or the

MartekProbe�

��� Temperature E�ects

Soil conductivity is a	ected by temperature� There is always a certain

danger in invasive experimentation� The removal of top soil or side soils could

have an e	ect on ECa readings�

��� Vertical E�ects

Though the sensitivity of the instrument decays with depth� an ex


tremely high conductivity below ��� meters could a	ect results� A water table

could� for example� cause a sharp increase in conductivity� Second order regu


larization would have a di�cult time picking out the sharp increase� Perhaps

the solution would try to compensate by over predicting at depths directly

above the water table�



��

�� Depth Sensitivity

Both models have some di�culty inverting pro�les below ��� meters�

This sensitivity matter is a particular problem for the linear model� This is not

surprising� As shown by �gure����� the instrument is most sensitive to shallow

depths�

��	 Lateral Homogeneity

Both models make an important assumption� that conductivity varies

only with depth� This assumption does not hold in practice� At nearly every

depth at nearly every site� there is considerable variability in the measured

ECa values� Furthermore at some sights there are strong lateral trends in ECa�

Though a thorough sensitivity analysis has not yet been conducted� it seems

reasonable that EM measurements would be sensitive to surface or subsurface

anomalies beyond the �� cm by �� cm square in which the ECa was actually

measured� A larger range of data is not currently available�

A forward sensitivity analysis can� however� be performed� Recall

that at each depth� � measurements were taken� Figures ����� and ����� depict

forward nonlinear predictions for site �� The dashed line represents forward

predictions using only the largest measured conductivity at each depth� Here

we use the conservative assumption that the semi
in�nite layer is at the last

measured conductivity� The dash�dot line represents the predictions using only

the lowest conductivity at each depth� Here we use the liberal assumption that

the semi
in�nite layer is � mS

m
� In neither plot do the EM
�� readings lie within

these predictions� It seems that lateral variability in the ECa measurements
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taken within the �� cm 	 ��cm grid is not enough to explain the consistent

over predictions�

It was shown in the previous chapter that site � is the only high

conductivity site in which the nonlinear model fails to produce a reasonable

solution� The authors of the data set produced a di	erent type of sensitivity

analysis that can help explain this result �Rhoades et al�� ������ Recall that at

each depth� ECa readings were taken in a grid pattern� A linear regression can

be performed on each layer� Of course the ECa is regressed onto the forward and

lateral positions of the data� If the result is a small set of coe�cients then we

can have con�dence that the soil conductivity is truly laterally homogeneous�

For site �� such a regression was signi�cant at the ���� level for three depths�

The resulting regressions are listed in table ������
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Depth�m� Model� ECa in mS

m
� x�y in meters R�

���� ECa � ����� 
 ����x 
 �����y �����
���� ECa � ����� � �����x � �����y �����
���� ECa � ����� 
 �����x 
 ����y �����

Table ���� Site � Regressions Signi�cant at ������
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For example� at ���� meters below the earth� a move of � meter in the

y direction could result in an ECa increase of almost ��� mS�m� With this sort

of change it is possible that varying conductivities outside of the measurement

grid could have a strong impact on the EM
�� measurements and thus the

inverse solutions�



Chapter �

Summary and Conclusions

The EM
�� inverse problem is only successfully solved as a least

squares problem when EM
�� measurements can be accurately predicted from

a measured conductivity pro�le� With this in mind� an extensive e	ort to com


pare forward linear and nonlinear predictions has been made� It was found that

both models over predicted the EM
�� measurements� The nonlinear model

without exception outperformed the linear model in forward predictions� The

di	erence was substantial for sites with high soil conductivities� In fact� the

nonlinear model generally produced satisfactory results for our purposes�

In choosing a regularization parameter� the L
curve principle should

be used� The discrepancy principle is too sensitive to estimations of � and

cross
validation is too computationally expensive�

In some cases the nonlinear model does not outperform the linear

model� The linear model� on the other hand� only outperforms the nonlinear

model for site �� The general failure of both models on site � can be� however�

partially attributed to a lack of lateral homogeneity�

Considering the computational expense of solving the nonlinear model�

the linear model may be appropriate for low conductivities and for depths down

to ��� meters�

This study introduces a comparison of two models and an overview of

��



��

how they might be solved� External inuences are not completely understood�

Further research is needed to understand the inuences of lateral anomalies�

Perhaps the range of ECa readings could be extended to a ��� meter square and

a more thorough sensitivity analysis could be performed� Finally� this study

has inverted only one dimensional pro�les� Two and three dimensional models

are being examined �Alumbaugh et al�� ����� Newman and Alumbaugh� �����

Alumbaugh and Newman� ������
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Forward Plots
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Appendix B

Linear and Nonlinear Inverse Solutions
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Appendix C

Linear L�curves
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Appendix D

Nonlinear L�curves
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